K-truss - Übersetzung nach russisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

K-truss - Übersetzung nach russisch

BRIDGE WHOSE LOAD-BEARING SUPERSTRUCTURE IS COMPOSED OF A TRUSS
Through truss; Deck truss; Pony truss; Truss bridges; Steel truss; Through-truss; Pratt truss; Through truss bridge; Deck truss bridge; Truss Bridge; Whipple truss; Pennsylvania petit truss; Bowstring arch truss; Pennsylvania truss; Camelback truss; Parker truss; Bowstring truss; Baltimore truss; Pennsylvania (petit) truss; Camelback bridge; Wichert continuous truss; Post Truss; Post truss; Warren girder; List of truss types; Pratt through truss; Thru truss; Lenticular pony truss bridge; Pratt Truss; Long truss; Metal truss bridge; Pegram truss; Allan truss; Waddell truss; Warren-girder; Pratt pony truss; Through-truss bridge; Baltimore through truss; Pony truss bridge; Lenticular truss bridge; Pennsylvania through truss; Whipple through truss; Whipple Truss; Inverted Fink truss; Inverted Fink truss bridge; Bowstring Arch Truss Bridge; Bowstring arch truss bridge; Bowstring arch truss bridges; Camelback through truss; Pratt truss bridge; Warren truss bridge; Warren Truss Bridge; Pegram through truss; Pegram through truss bridge; Bowstring truss bridge; Pony trusses; Queenspost; Smith truss; Allan truss bridge; Howe trusses; Parker through truss bridge; Parker through truss; Long-truss; Half-through truss; Baltimore deck truss; Pratt through-truss; Warren pony truss; K-truss
  • thumb
  • thumb
  • [[Forth Bridge]] across the [[Firth of Forth]] in the east of Scotland
  • Bowstring truss
  • Driving across a truss bridge
  • The [[Fair Oaks Bridge]] is an example of Pennsylvania Petit truss bridge.
  • Gatton Railway Bridge showing the Pratt truss design
  • url-status=live }}</ref>
  • Lattice, or Warren quadrangular truss illustrated
  • thumb
  • HAER]] diagram of a Long truss
  • Macleay River Railway Bridge]] - a Pratt truss design - at Kempsey, NSW, Australia
  • The old Großhesselohe bridge before 1905, designed by Friedrich von Pauli
  • thumb
  • Partridge truss design
  • date=2017-02-15 }}, Members of a Truss Bridge by Benj. F. La Rue, Home Study Magazine, Published by the Colliery Engineer Company, Vol 3, No. 2, March 1898, pages 67-68.</ref>
  • thumb
  • [[Homestead Grays Bridge]] over the [[Monongahela River]] in [[Pittsburgh, Pennsylvania]]
  • The lattice truss [[Runcorn Railway Bridge]].
  • Smith truss
  • A Thacher truss bridge
  • thumb
  • Truss arch bridge
  • A Warren truss
  • thumb

K-truss         

общая лексика

ферма с полураскосной решеткой

Parker truss         

строительное дело

ферма Паркера

ферма с полигональным верхним поясом

Pratt truss         

общая лексика

английская ферма

ферма Пратта (ферма с параллельными поясами и нисходящими раскосами)

строительное дело

треугольная стропильная ферма Пратта (с растянутыми нисходящими раскосами и сжатыми стойками)

балочная ферма Пратта (с параллельными поясами, растянутыми нисходящими раскосами и сжатыми стойками)

Definition

К-мезоны

каоны, группа нестабильных элементарных частиц, в которую входят две заряженные (К+, К-) и две нейтральные (К0, ) частицы с нулевым Спином и массой приблизительно в 970 раз большей, чем масса электрона. К.-м. участвуют в сильных взаимодействиях (См. Сильные взаимодействия), т. е. являются адронами; они не имеют барионного заряда (См. Барионный заряд) и обладают отличным от нуля значением квантового числа странности (См. Странность) (S), характеризующей их поведение в процессах, обусловленных сильным взаимодействием: у К+ и К° S=+1, а у К- и (являющихся античастицами (См. Античастицы) К+, К°) S = -1. Совместно с гиперонами (См. Гипероны) К.-м. образуют группу так называемых странных частиц (частиц, для которых S ≠ 0).

К+ и К° одинаковым образом участвуют в сильных взаимодействиях, имеют приблизительно одинаковые массы и различаются лишь электрическим зарядом. Они могут быть объединены в одну группу - так называемый изотопический дублет (см. Изотопическая инвариантность) и рассматриваются как различные зарядовые состояния одной и той же частицы с изотопическим спином (См. Изотопический спин) I = 1/2. Аналогичную группу составляют и . Из-за различия в странности нейтральные К-м. К° и являются разными частицами, различным образом участвующими в сильных взаимодействиях.

Согласно современной классификации элементарных частиц, К-м. (К+, К°, , ) вместе с π-мезонами (π+, π0, π-) и η0-мезоном входят в одну группу (октет) частиц, приблизительно одинаково участвующих в сильных взаимодействиях.

Открытие К-мезонов связано с работами большого числа учёных в различных странах. В 1947-51 в космических лучах (См. Космические лучи) было открыто несколько частиц, массы которых, измеренные с доступной в то время точностью, были приблизительно одинаковыми, а способы распада - разными.

Табл. 1.- Основные характеристики и способы распада К-мезонов

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

| Частица | Масса m (Мэв) | Странность S | Время жизни τ: | Способы | Вероятность |

| | | | (сек) | распада | распада \%) |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| К+ | 494 | +1 | 1,2-10-8 | μ±+ν | 64 |

| К- | | -1 | | π±+ π0 | 21 |

| | | | | π±+ π-+ π+ | 5,57 |

| | | | | π±00 | 1,70 |

| | | | | μ±0+ν | 3,18 |

| | | | | e±0+ν | 4,85 |

| | | | | e±+ν | 1,2-10-5 |

|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| К0 | 498 | +1 | | Распады на К-мезоны50\% по схеме K0S и на |

| | | -1 | | К-мезоны50\% по схеме и на K0L (см. табл. |

| | | | | 2). |

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Табл. 2.- Основные способы распада K0S и K0L

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

| Частица | Масса м | Время жизни τ (сек) | Способы распада | Вероятность |

| | | | | распада \%) |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| K0S | ≈mK0 | 0,86-10-10 | π++ π- | 68,7 |

| | | | π00 | 31,3 |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| K0L | ≈mK0 | 5,4-10-8 | π000 | 21,5 |

| | Разность масс: | | π+-0 | 12,6 |

| | m KL - m Ks 3-10-6 | | π±±+ν | 26,8 |

| | эв | | π±+e±+ν | 38,8 |

| | | | π++ π- | 0,16 |

| | | | π00 | 0,12 |

| | | | γ+ γ | 5-10-4 |

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Это были так называемые θ-мезоны, распадающиеся на два пи-мезона (См. Пи-мезоны), τ-мезоны, распадающиеся на три π-мезона, и др. Значит. прогресс в изучении этих частиц начался с 1954, когда их удалось получать с помощью ускорителей заряженных частиц (См. Ускорители заряженных частиц). Тщательные измерения масс и времён жизни показали, что во всех этих случаях наблюдались различные способы распада одних и тех же частиц, названных К-м.

Открытие К-м. сыграло важную роль в физике элементарных частиц; оно помогло установить новую характеристику сильно взаимодействующих частиц (адронов) - странность и создать современную систематику адронов (см. Элементарные частицы). Изучение распадов К-м. дало первые сведения о несохранении в слабых взаимодействиях (См. Слабые взаимодействия) пространственной и зарядовой чётности, а также о нарушении комбинированной чётности (см. Чётность, Зарядовое сопряжение, Комбинированная инверсия).

Сильные взаимодействия К-мезонов. Наличие у К-м. отличной от нуля странности S накладывает (из-за сохранения S в сильных взаимодействиях) характерный отпечаток на процессы сильных взаимодействий с участием К-м. Так, К+ и К0, имеющие S = +1, рождаются при столкновениях "нестранных" частиц - π-мезонов и нуклонов (протонов и нейтронов) - только совместно с гиперонами или , , имеющими отрицательное значение странности (см., например, в ст. Гипероны).

Поскольку все гипероны имеют отрицательную странность, они легче рождаются в процессах, вызванных К- и , чем в процессах, вызванных К+ и К0. Например, возможна реакция + р → Λ0 + π+, тогда как реакция К0 + р → Λ0 + π + запрещена законом сохранения странности в сильных взаимодействиях (здесь р - протон, Λ0 - гиперон). Рождение гиперонов в пучках К+, К0 менее вероятно, т.к. оно требует появления совместно с гипероном нескольких дополнительных К+ или К0.

Поэтому медленные К+, К0 слабее взаимодействуют с веществом, чем , .

Слабые взаимодействия К-мезонов. Распады К-м. обусловлены слабым взаимодействием и происходят с изменением странности на 1 (в слабых взаимодействиях странность не сохраняется). Распады могут осуществляться различными способами и подчиняются эмпирическим правилам, определяющим изменение странности, изотопического спина адронов и пр. (см. Отбора правила). В распадах К-м. не сохраняются пространственная и зарядовая чётности, что проявляется, например., в возможности распада как на 2 π-, так и на 3 π-мезона.

Рисунок иллюстрирует процессы сильного и слабого взаимодействия К-м.

Специфические свойства нейтральных К-мезонов. Выше отмечалось, что К0- и -мезоны, отличаясь друг от друга значениями квантового числа странности, участвуют в процессах сильного взаимодействия как две различные частицы. Поскольку, однако, в процессах слабого взаимодействия, в частности в распадах К.-м., странность не сохраняется, оказываются возможными взаимные превращения K0. Наличие таких переходов между частицей и античастицей, имеющими разные значения одного из квантовых чисел, характеризующих элементарные частицы, обусловливает специфические, уникальные свойства нейтральных К.-м. Для любых других частиц существование подобных переходов запрещено строгими законами сохранения электрического или барионного заряда (а также, по-видимому, и лептонного заряда (См. Лептонный заряд) для переходов нейтрино - антинейтрино).

В вакууме благодаря переходам K0 состояниями, имеющими определённую энергию и время жизни, будут не К0 и , а две квантово-механических суперпозиции этих состояний. Эти суперпозиции соответствуют частицам с различными массами и различными временами жизни: долгоживущему K0L- и короткоживущему K0S-meзонам. Разность масс K0S и K0L обусловлена слабым взаимодействием, вызывающим переходы K0, и весьма мала. Время жизни и способы распада K0S и K0L указаны в.

Таким образом, в то время как в процессах, вызываемых сильным взаимодействием, проявляются состояния К0 и , обладающие определёнными значениями странности (сохраняющейся в сильном взаимодействии), в процессах слабого взаимодействия (в распадах) проявляются как частицы состояния K0L и K0S. Состояния K0L и K0S близки к суперпозициям состояний, которые называют K01 и K02:

K0s ≈ K01 = ,

K0L ≈ K02 = ,

т. е. K0L и K0S приблизительно на 50\% "состоят" из К0 и на 50\% - из . Аналогичным образом можно утверждать, что К0 и приблизительно на 50\% "состоят" из K0S и на 50\% - из K0L тот факт, что состояния К0 и представляют суперпозицию двух состояний K0L и K0S разными массами и временами жизни, приводит к появлению своеобразных осцилляций ("биений"): К0, возникая в результате сильного взаимодействия, на некотором расстоянии от точки рождения частично превращается за счёт слабого взаимодействия в и потому оказывается способным вызывать ядерные реакции, характерные для и запрещенные для К0, например реакцию + р → Λ0 + π + (эффект Пайса - Пиччони). Др. своеобразное явление - так называемая регенерация короткоживущих K0S-meзонов при прохождении через вещество долгоживущих K0L-meзонов: на достаточно больших расстояниях от места образования пучка К0 (или ) пучок состоит практически только из долгоживущих K0L, т.к. короткоживущие K0S распадаются раньше. Поэтому на таких расстояниях наблюдаются лишь распады, характерные для K0L (). Казалось бы, K0S не могут вновь появиться в пучке. Однако если пучок K0L пропустить через слой вещества, то из-за различия во взаимодействиях с веществом К0 и , составляющих K0L, изменяется относительный состав пучка и в пучке K0L появляется добавка K0S с характерными для K0S распадами.

Комбинации K01 и К02 обладают определённой симметрией относительно операции комбинированной инверсии (СР): при переходе от частиц к античастицам (операция зарядового сопряжения С) с одновременным пространственным отражением (операция Р) волновая функция, соответствующая состоянию K01, остаётся неизменной, а волновая функция К02 меняет знак. Поэтому состояние K01 может распадаться на 2π (систему, обладающую теми же свойствами относительно операции СР, что и K01), a K02 не может. Поскольку вероятность распада на 2π значительно превышает вероятности др. способов (каналов) распада, большое различие во временах жизни долго- и короткоживущих К-м. считалось указанием на существование в природе симметрии относительно операции комбинированной инверсии, а состояния K0L и K0S отождествлялись с K01 и К02. Однако в 1964 было установлено, что долгоживущий К-м. с вероятностью приблизительно 0,2\% распадается на 2π. Это свидетельствует о нарушении СР-симметрии и об отличии состояний K0L и K0S от K01 и К02. Природа сил, нарушающих СР-симметрию, ещё не выяснена. Имеющиеся эксперимент. данные не противоречат возможности существования в природе особого "сверхслабого" взаимодействия, нарушающего симметрию СР и проявляющегося в распадах нейтральных К-м.

Лит.: Марков М. А., Гипероны и К-мезоны, М., 1958; Далиц P., Странные частицы и сильные взаимодействия, пер. с англ., М., 1964; Окунь Л. Б., Слабое взаимодействие элементарных частиц, М., 1963; Ли Ц. и By Ц., Слабые взаимодействия пер. с англ., М., 1968; Газиорович С., Физика элементарных частиц, пер. с англ. М., 1969; Эдер Р. К., Фаулер Э. К., Странные частицы, пер. с англ., М., 1966.

С. С. Герштейн.

Схематическое изображение фотографии, полученной в водородной пузырьковой камере, иллюстрирующее процессы сильного и слабого взаимодействий К-мезонов. В точке 1 за счёт сильного взаимодействия происходит реакция К-+p→Ω-+0, в которой сохраняется странность. Распады образовавшихся частиц происходят в результате слабого взаимодействия с изменением странности на 1: К0→π+- (в точке 2); Ω-→Λ0- (в точке 3); Λ0→p+π- (в точке 4); К-→π+-- (в точке 5). Треки частиц искривлены, так как камера находится в магнитном поле. Пунктиром обозначены треки нейтральных частиц, не оставляющие следа в камере.

Wikipedia

Truss bridge

A truss bridge is a bridge whose load-bearing superstructure is composed of a truss, a structure of connected elements, usually forming triangular units. The connected elements (typically straight) may be stressed from tension, compression, or sometimes both in response to dynamic loads. The basic types of truss bridges shown in this article have simple designs which could be easily analyzed by 19th and early 20th-century engineers. A truss bridge is economical to construct because it uses materials efficiently.

Übersetzung von &#39K-truss&#39 in Russisch